200字范文,内容丰富有趣,生活中的好帮手!
200字范文 > 平方和立方和公式推导

平方和立方和公式推导

时间:2019-09-14 22:43:14

相关推荐

平方和立方和公式推导

向欧拉大神致敬

欧拉计划之——和的平方与平方的和之差

和的平方与平方的和之差平方和&立方和公式推导平方和公式推导证法一(归纳法):证法二:证法三:证法四(排列组合法):证法五:立方和公式推导证法一:(归纳法)证法二:证法三:

和的平方与平方的和之差

前十个自然数的平方的和为:

12+22+32+⋯+102=3851^2+2^2+3^2+⋯+10^2=38512+22+32+⋯+102=385

而前十个自然数和的平方为:

(1+2+3+⋯+10)2=552=3025(1+2+3+⋯+10)^2=55^2=3025(1+2+3+⋯+10)2=552=3025

两者的差为3025−385=2640,求前一百个自然数的和的平方与平方的和之间的差值。

分析:

此题可以直接使用求和公式求解,则:

S(n)=(n(n+1)2)2−n(n+1)(2n+1)6=(n−1)n(n+1)(3n+2)12S(n)=(\frac{n(n+1)}{2})^2−\frac{n(n+1)(2n+1)}{6}=\frac{(n−1)n(n+1)(3n+2)}{12}S(n)=(2n(n+1)​)2−6n(n+1)(2n+1)​=12(n−1)n(n+1)(3n+2)​

代入S(100)S_{(100)}S(100)​可以直接算出结果,代码如下:

def main(n):ans = n * (n - 1) * (n + 1) * (3 * n + 2) / 12return int(ans)print(main(100))

运行结果:25164150

返回顶部

平方和&立方和公式推导

平方和公式推导

∑i=1ni2=n(n+1)(2n+1)6\sum_{i = 1}^n i^2= \frac{n(n+1)(2n+1)}{6}∑i=1n​i2=6n(n+1)(2n+1)​

证法一(归纳法):

n = 1:1=1(1+1)(2×1+1)61 = \frac{1(1+1)(2×1+1)}{6}1=61(1+1)(2×1+1)​

n = 2:1+22=2(2+1)(2×2+1)6=51+2^2 = \frac{2(2+1)(2×2+1)}{6}=51+22=62(2+1)(2×2+1)​=5

⋯⋯\cdots \cdots⋯⋯

n = k(k∈Z,k≥2k \in Z,k ≥2k∈Z,k≥2):∑i=1ki2=k(k+1)(2k+1)6\sum_{i = 1}^k i^2= \frac{k(k+1)(2k+1)}{6}∑i=1k​i2=6k(k+1)(2k+1)​

n = k+1:

(∑i=1k+1i2)=(∑i=1ki2)+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(2k2+k+6k+6)6=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=n(n+1)(2n+1)6\begin{aligned} (\sum_{i = 1}^{k+1} i^2) &= (\sum_{i = 1}^k i^2)+(k+1)^2 \\ &= \frac{k(k+1)(2k+1)}{6}+(k+1)^2 \\ &= \frac{(k+1)(2k^2+k+6k+6)}{6}\\ &= \frac{(k+1)(2k^2+7k+6)}{6}\\ &= \frac{(k+1)(k+2)(2k+3)}{6}\\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned} (i=1∑k+1​i2)​=(i=1∑k​i2)+(k+1)2=6k(k+1)(2k+1)​+(k+1)2=6(k+1)(2k2+k+6k+6)​=6(k+1)(2k2+7k+6)​=6(k+1)(k+2)(2k+3)​=6n(n+1)(2n+1)​​

也满足公式。

根据数学归纳法,对于一切自然数,(∑i=1ni2)=n(n+1)(2n+1)6(\sum_{i = 1}^n i^2) = \frac{n(n+1)(2n+1)}{6}(∑i=1n​i2)=6n(n+1)(2n+1)​成立。

证法二:

利用恒等式(n+1)3=n3+3n2+3n+1(n+1)^3 = n^3+3n^2+3n+1(n+1)3=n3+3n2+3n+1

(n+1)3−n3=3n2+3n+1n3−(n−1)2=3(n−1)2+3(n−1)+1……23−13=3×12+3×1+1\begin{aligned} (n+1)^3 - n^3 &= 3n^2 + 3n + 1 \\ n^3 - (n-1)^2 &= 3(n-1)^2 + 3(n-1) + 1 \\ &…… \\ 2^3 - 1^3 &= 3×1^2 + 3×1 + 1 \end{aligned} (n+1)3−n3n3−(n−1)223−13​=3n2+3n+1=3(n−1)2+3(n−1)+1……=3×12+3×1+1​

两边求和得:

(n+1)3−1=3(∑i=1ni2)+3(1+2+……+n)+n∑i=1ni2=((n+1)3−1)−3n(n+1)/2−n3=(2n3+6n2+6n)−3n2−3n−2n6=2n3+3n2+n6=n(n+1)(2n+1)6\begin{aligned} (n+1)^3 - 1 &= 3(\sum_{i = 1}^n i^2) + 3(1+2+……+n) + n \\ \sum_{i = 1}^n i^2 &= \frac{((n+1)^3-1) - 3n(n+1)/2 - n}{3} \\ &= \frac{(2n^3+6n^2+6n) - 3n^2 -3n - 2n}{6} \\ &= \frac{2n^3+3n^2+n}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned} (n+1)3−1i=1∑n​i2​=3(i=1∑n​i2)+3(1+2+……+n)+n=3((n+1)3−1)−3n(n+1)/2−n​=6(2n3+6n2+6n)−3n2−3n−2n​=62n3+3n2+n​=6n(n+1)(2n+1)​​

证法三:

利用恒等式n(n+1)=n(n+1)(n+2)−(n−1)n(n+1)3n(n+1) = \frac{n(n+1)(n+2) - (n-1)n(n+1)}{3}n(n+1)=3n(n+1)(n+2)−(n−1)n(n+1)​

∑i=1ni2=1×(2−1)+2(3−1)+……+n(n+1−1)=1×2+2×3+……+n(n+1)−(1+2+……+n)=1×2×3−0×1×23+2×3×4−1×2×33+……+n×(n+1)×(n+2)−(n−1)×n×(n+1)3−n(n+1)2=n×(n+1)×(n+2)3−n(n+1)2=n×(n+1)×2(n+2)−3n(n+1)6=n×(n+1)×(2n+4−3)6=n(n+1)(2n+1)6\begin{aligned} \sum_{i = 1}^n i^2 &= 1×(2-1)+2(3-1)+……+n(n+1-1) \\ &= 1×2+2×3+……+n(n+1) - (1+2+……+n) \\ &= \frac{1×2×3-0×1×2}{3} + \frac{2×3×4-1×2×3}{3} +……\\ &+ \frac{n×(n+1)×(n+2)-(n-1)×n×(n+1)}{3} - \frac{n(n+1)}{2} \\ &= \frac{n×(n+1)×(n+2)}{3} - \frac{n(n+1)}{2}\\ &= \frac{n×(n+1)×2(n+2) - 3n(n+1)}{6} \\ &= \frac{n×(n+1)×(2n+4-3)}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned} i=1∑n​i2​=1×(2−1)+2(3−1)+……+n(n+1−1)=1×2+2×3+……+n(n+1)−(1+2+……+n)=31×2×3−0×1×2​+32×3×4−1×2×3​+……+3n×(n+1)×(n+2)−(n−1)×n×(n+1)​−2n(n+1)​=3n×(n+1)×(n+2)​−2n(n+1)​=6n×(n+1)×2(n+2)−3n(n+1)​=6n×(n+1)×(2n+4−3)​=6n(n+1)(2n+1)​​

证法四(排列组合法):

首先,证明组合Cn+12=C11+C21+……+Cn1C_{n+1}^2 = C_1^1+C_2^1+……+C_n^1Cn+12​=C11​+C21​+……+Cn1​

从n+1个里面选2个的情形:

假设先选第1个(其它也可以,仅为看着方便),剩下从n个里面选1个,即Cn1C_n^1Cn1​;假设选第2个,同时不能再选第1个(会重复),剩下从n-1个里面选1个,即Cn−11C_{n-1}^1Cn−11​;……假设选第n个,同时不能再选前面的,剩下从最后1个里面选1个,即C11C_1^1C11​

得到证明。

同样的方法,可以证明组合Cn+13=C22+C32+……+Cn2C_{n+1}^3 = C_2^2+C_3^2+……+C_n^2Cn+13​=C22​+C32​+……+Cn2​

由于k2=k(k−1)+k=2Ck2+Ck1k^2 = k(k-1) + k = 2C_k^2 + C_k^1k2=k(k−1)+k=2Ck2​+Ck1​

当k = 1时,理论上不可能从1个中挑出2个,可以认为C12=0C_1^2 = 0C12​=0

∑i=1ni2=2(C22+C32+……+Cn2)+(C11+C21+……+Cn1)=2Cn+13+Cn+12=2×(n+1)n(n−1)3×2×1+(n+1)n2×1=(n+1)n(2n−2+3)6=n(n+1)(2n+1)6\begin{aligned} \sum_{i = 1}^n i^2 &= 2(C_2^2+C_3^2+……+C_n^2) + (C_1^1+C_2^1+……+C_n^1) \\ &= 2C_{n+1}^3 + C_{n+1}^2 \\ &= 2×\frac{(n+1)n(n-1)}{3×2×1} + \frac{(n+1)n}{2×1} \\ &= \frac{(n+1)n(2n-2+3)}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned} i=1∑n​i2​=2(C22​+C32​+……+Cn2​)+(C11​+C21​+……+Cn1​)=2Cn+13​+Cn+12​=2×3×2×1(n+1)n(n−1)​+2×1(n+1)n​=6(n+1)n(2n−2+3)​=6n(n+1)(2n+1)​​

证法五:

利用恒等式n2=(2n−1+1)×n2=1+3+5+……+(2n−1)n^2 = \frac{(2n - 1 + 1)×n}{2} = 1+3+5+……+(2n -1)n2=2(2n−1+1)×n​=1+3+5+……+(2n−1)

12=122=1+332=1+3+5……n2=1+3+5+……+(2n−1)\begin{aligned} &1^2 = 1 \\ &2^2 = 1 + 3 \\ &3^2 = 1 + 3 + 5\\ &…… \\ &n^2 = 1 + 3 + 5 + …… + (2n - 1) \end{aligned} ​12=122=1+332=1+3+5……n2=1+3+5+……+(2n−1)​

等式两边同时求和得:

∑i=1ni2=n×[1+3+5+……+(2n−1)]−[0×1+1×3+2×5+……+(n−1)(2n−1)]=n×n2−∑i=1n[(i−1)(2i−1)]=n3−∑i=1n[(i−1)(2(i−1)+1)]=n3−2∑i=1n(i−1)2−∑i=1n(i−1)=n3−2×((∑i=1ni2)−n2)−n(n−1)2两边移动后:3×∑i=1ni2=n3+2n2−n(n−1)2∑i=1ni2=2n3+4n2−n2+n6=n(n+1)(2n+1)6\begin{aligned} \sum_{i = 1}^n i^2 &= n×[1 + 3 + 5 + …… + (2n -1)] - [0×1+1×3+2×5+……+(n - 1)(2n - 1)] \\ &= n×n^2 - \sum_{i = 1}^n [ (i - 1)(2i - 1) ] \\ &= n^3 - \sum_{i = 1}^n [ (i - 1)(2(i - 1) + 1) ] \\ &= n^3 - 2\sum_{i = 1}^n (i - 1)^2 - \sum_{i = 1}^n (i - 1) \\ &= n^3 - 2×((\sum_{i = 1}^n i^2) - n^2) - \frac{n(n-1)}{2} \\ 两边移动后:\\ 3×\sum_{i = 1}^n i^2 &= n^3 +2n^2 - \frac{n(n-1)}{2} \\ \sum_{i = 1}^n i^2 &= \frac{2n^3+4n^2-n^2+n}{6} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned} i=1∑n​i2两边移动后:3×i=1∑n​i2i=1∑n​i2​=n×[1+3+5+……+(2n−1)]−[0×1+1×3+2×5+……+(n−1)(2n−1)]=n×n2−i=1∑n​[(i−1)(2i−1)]=n3−i=1∑n​[(i−1)(2(i−1)+1)]=n3−2i=1∑n​(i−1)2−i=1∑n​(i−1)=n3−2×((i=1∑n​i2)−n2)−2n(n−1)​=n3+2n2−2n(n−1)​=62n3+4n2−n2+n​=6n(n+1)(2n+1)​​

返回顶部

立方和公式推导

∑i=1ni3=(∑i=1n)2\sum_{i = 1}^n i^3= (\sum_{i=1}^n)^2∑i=1n​i3=(∑i=1n​)2

证法一:(归纳法)

n = 1:13=121^3 = 1^213=12

n = 2:13+23=(1+2)2=91^3+2^3 = (1+2)^2 = 913+23=(1+2)2=9

n = 3:13+23+33=(1+2+3)2=361^3+2^3 + 3^3= (1+2+3)^2 = 3613+23+33=(1+2+3)2=36

……

n = k(k∈Z,k≥2k \in Z,k ≥2k∈Z,k≥2):∑i=1ki3=(∑i=1ki)2=(k(k+1)2)2\sum_{i = 1}^k i^3= (\sum_{i = 1}^k i)^2 = (\frac{k(k+1)}{2})^2∑i=1k​i3=(∑i=1k​i)2=(2k(k+1)​)2

n = k+1:

∑i=1k+1i3=(∑i=1ki3)+(k+1)3=(k(k+1)2)2+(k+1)3=((k+1)2)2×(k2+4(k+1))=((k+1)(k+2)2)2=(∑i=1k+1i)2\begin{aligned} \sum_{i = 1}^{k+1} i^3 &= (\sum_{i = 1}^k i^3) + (k+1)^3 \\ &= (\frac{k(k+1)}{2})^2 + (k+1)^3 \\ &= (\frac{(k+1)}{2})^2 × (k^2 + 4(k+1)) \\ &= (\frac{(k+1)(k+2)}{2})^2 = (\sum_{i = 1}^{k+1} i)^2 \end{aligned} i=1∑k+1​i3​=(i=1∑k​i3)+(k+1)3=(2k(k+1)​)2+(k+1)3=(2(k+1)​)2×(k2+4(k+1))=(2(k+1)(k+2)​)2=(i=1∑k+1​i)2​

也满足公式。

根据数学归纳法,对于一切自然数,∑i=1ni3=(∑i=1n)2\sum_{i = 1}^n i^3= (\sum_{i=1}^n)^2∑i=1n​i3=(∑i=1n​)2成立。

证法二:

利用恒等式(n+1)4=n4+4n3+6n2+4n+1(n+1)^4 = n^4 + 4n^3 + 6n^2+4n+1(n+1)4=n4+4n3+6n2+4n+1

(n+1)4−n4=4n3+6n2+4n+1n4−(n−1)4=4(n−1)3+6(n−1)2+4(n−1)+1……24−14=4×13+6×12+4×1+1\begin{aligned} (n+1)^4 - n^4 &= 4n^3 + 6n^2 +4n + 1 \\ n^4 - (n-1)^4 &= 4(n-1)^3 + 6(n-1)^2 +4(n-1) + 1 \\ &…… \\ 2^4 - 1^4 &= 4×1^3 + 6×1^2 +4×1 + 1 \\ \end{aligned} (n+1)4−n4n4−(n−1)424−14​=4n3+6n2+4n+1=4(n−1)3+6(n−1)2+4(n−1)+1……=4×13+6×12+4×1+1​

两边求和得:

(n+1)4−1=4(∑i=1ni3)+6(∑i=1ni2)+4(∑i=1ni)+n∑i=1ni3=((n+1)4−1)−6×n(n+1)(2n+1)6−4×n(n+1)2−n4=n(n+2)(n2+2n+2)−n(n+1)(2n+1)−2n(n+1)−n4=n(n3+4n2+6n+4−2n2−3n−1−2n−2−1)4=n2(n+1)24=(∑i=1ni)2\begin{aligned} (n+1)^4 - 1 &= 4(\sum_{i = 1}^n i^3) + 6(\sum_{i = 1}^n i^2) + 4(\sum_{i = 1}^n i) + n \\ \sum_{i = 1}^n i^3 &= \frac{((n+1)^4-1) - 6×\frac{n(n+1)(2n+1)}{6} - 4× \frac{n(n+1)}{2} - n}{4} \\ &= \frac{n(n+2)(n^2+2n+2) - n(n+1)(2n+1) -2n(n+1) - n}{4} \\ &= \frac{n(n^3+4n^2+6n+4-2n^2-3n-1-2n-2-1)}{4} \\ &= \frac{n^2(n+1)^2}{4} = (\sum_{i = 1}^n i)^2 \end{aligned} (n+1)4−1i=1∑n​i3​=4(i=1∑n​i3)+6(i=1∑n​i2)+4(i=1∑n​i)+n=4((n+1)4−1)−6×6n(n+1)(2n+1)​−4×2n(n+1)​−n​=4n(n+2)(n2+2n+2)−n(n+1)(2n+1)−2n(n+1)−n​=4n(n3+4n2+6n+4−2n2−3n−1−2n−2−1)​=4n2(n+1)2​=(i=1∑n​i)2​

证法三:

1=0+12+3+4=1+23=95+6+7+8+9=23+33=35……\begin{aligned} 1 &= 0 + 1 \\ 2 + 3 + 4 &= 1 + 2^3 = 9\\ 5 + 6 + 7 + 8 + 9 &= 2^3 + 3^3 = 35 \\ &…… \\ \end{aligned} 12+3+45+6+7+8+9​=0+1=1+23=9=23+33=35……​

可以证明:

∑i=m2+1(m+1)2i=((m+1)2−m2)((m+1)2+m2+1)2=2m3+3m2+3m+1=m3+(m3+3m2+3m+1)=m3+(m+1)3\begin{aligned} \sum_{i=m^2+1}^{(m+1)^2} i &= \frac{((m+1)^2 - m^2)((m+1)^2 + m^2 +1)}{2} \\ &=2m^3+3m^2+3m+1 \\ &=m^3 + (m^3 + 3m^2 +3m +1) \\ &=m^3 + (m+1)^3 \end{aligned} i=m2+1∑(m+1)2​i​=2((m+1)2−m2)((m+1)2+m2+1)​=2m3+3m2+3m+1=m3+(m3+3m2+3m+1)=m3+(m+1)3​

等式两边分别从1加到m:

1+(2+3+4)+(5+6+7+8+9)+……+∑i=m2+1(m+1)2i=2×(13+23+33+……+m3)+(m+1)3(∑i=1(m+1)2i)−(m+1)3=2∑i=1mi3∑i=1mi3=(m+1)2((m+1)2+1)2−(m+1)32=(m+1)2((m+1)2+1−2(m+1))4=(m(m+1)2)2=(∑i=1mi)2\begin{aligned} 1+(2+3+4)+(5+6+7+8+9)+……+\sum_{i=m^2+1}^{(m+1)^2} i &= 2 × (1^3+2^3+3^3+……+m^3) + (m+1)^3 \\ (\sum_{i=1}^{(m+1)^2} i) - (m+1)^3 &= 2\sum_{i=1}^m i^3 \\ \sum_{i=1}^m i^3 &= \frac{\frac{(m+1)^2((m+1)^2+1) }{2} - (m+1)^3}{2} \\ &=\frac{(m+1)^2((m+1)^2+1 - 2(m+1)) }{4} \\ &=(\frac{m(m+1)}{2})^2 = (\sum_{i=1}^m i)^2 \end{aligned} 1+(2+3+4)+(5+6+7+8+9)+……+i=m2+1∑(m+1)2​i(i=1∑(m+1)2​i)−(m+1)3i=1∑m​i3​=2×(13+23+33+……+m3)+(m+1)3=2i=1∑m​i3=22(m+1)2((m+1)2+1)​−(m+1)3​=4(m+1)2((m+1)2+1−2(m+1))​=(2m(m+1)​)2=(i=1∑m​i)2​

欢迎关注,敬请点赞!

返回顶部

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。